天桥脑科学研究院《科学》杂志研讨会:脑科学(3)
具体来说,基于机器学习模型,毛颖团队开发了一种 AI 脑肿瘤病理诊断系统。通过对300例确诊病例的多张MRI(核磁共振)图像进行深度学习建立模型,这一系统最终的准确率在85% 以上,并随着病例数量的增加,该模型将得到改进。此外,毛颖团队还研发了一种新的算法系统,识别运动任务过程中不同脑区的时间顺序,从而应用于搭载脑机接口的患者,以及时规范大脑活动。
毛颖表示,机器学习方法为潜在的临床实践(即诊断、治疗)提供了神经外科医生友好的医疗工具,而且还让事情更简单,动作更快,在神经外科学中做出正确的决定。当然,这其中大样本、前瞻性、多中心化的数据是必不可少的。毛颖还认为,未来常规临床实践中,都需要使用基于ML技术的方法手段。“最好的机器学习比临床医生表现更好。”
不过,毛颖也指出,深度学习或 AI 技术依然基于条件经验以及大数据算法支撑,目前仍处于弱人工智能阶段,需要输入大量高质量数据,才能取得接近准确的结果。但他相信,在不久的将来,计算机会变得越来越聪明,从而更好地帮助神经外科医生。
“但老实说,用机器人替代神经外科医生是不可能的,依然还需要我们医生来继续做手术。”毛颖在研讨会上回答主持人提问时表示。

他在演讲中强调,现在 ML 技术,人类只能看到前方的一小段距离,距离完成类似登顶运动这样的“全智能神经外科手术流程”,还有很长的路要走。
文章来源:《中国疼痛医学杂志》 网址: http://www.zgttyxzzzz.cn/zonghexinwen/2021/1017/419.html